COMPOSITES CURRICULUM - Unit Information

This unit forms part of the Masters level Composites Curriculum developed by Bristol and Plymouth Universities.

Taught block title	Core Block
Unit title	Properties of Composites
Level (Credit points)	H (2)
Unit director	Professor Kevin Potter

Unit description

This unit forms part of the Masters level Composites Curriculum. It builds on the units "Introduction to Composites" and "Composites Constituents" to provide Learners with a more in depth understanding of the properties and performance of polymer matrix composite materials and the products made from them.

Core subjects to be covered

- Properties of a single fibre and a dry tow of many fibres
- 2. Properties of a tow when a matrix is added
- Properties of a unidirectional laminate of many tows
- 4. Properties of a laminate at an angle to the fibres
- 5. Properties of biaxial and pseudo-isotropic laminates
- 6. Properties of short fibre composites
- 7. Properties of 3D reinforced composites
- 8. Properties of post-use recovered fibres
- 9. Predicting strength and stiffness of arbitrary layup laminates

- 10. Strength and stiffness through thickness
- 11. Toughness of composite laminates
- 12. Effects of temperature on properties
- 13. Effects of moisture on properties
- 14. Effects of other environments on properties
- Effects of high strain rates on properties impact
- Effects of long loading time on properties creep and fatigue
- 17. Electrical properties of composites
- 18. Fire performance of composites
- 19. Test methods for composites
- 20. Data bases of composites performance data.

Statement of unit aims

The aims of this unit are to:

- 1. Provide Learners with a more detailed view of the development of mechanical properties in composite materials
- 2. Demonstrate how laminate mechanical properties may be predicted from fibre and matrix properties
- 3. Demonstrate how laminate properties vary with loading direction
- 4. Provide the learners with an understanding of non-mechanical properties of composites and the importance of these in product design

Statement of learning outcomes

Learners will be able to:

- 1. Design a laminate to achieve a specific set of basic mechanical properties
- 2. Understand the impact of externally applied loads on that laminate
- Appreciate the likely non-mechanical properties of the laminate that has been designed

Methods of teaching	7 lectures, 2 lab classes and demonstrations, 1 class exercise
Assessment details if required	Written assignment (85%), 20 minute assessed presentation (15%)
Timetable information	2 days of teaching in a block